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A system of elliptic partial differential equations and boundary condi- 
tions has been developed for generating boundary-fitted finite element 
discretizations of two-dimensional free and moving boundary 
problems. Terms in the differential equations are scaled for dimensional 
homogeneity and adjustable weighting of orthogonality, smoothness, 
and concentration of the coordinate mesh they govern. Grid points 
become finite element nodes mapped isoparametrically or sub- 
parametrically from a simple or patched computational domain. Con- 
centration terms contain control functions and parameters that 
influence node spacing along each coordinate independently; overall 
control is by patchwise parameters and functions. Successful selection 
of these to follow deforming flow regions is straightforward and is 
illustrated by analysis of steady and transient slide coating flows. 
(c) 1992 Academic Press. Inc. 

1. INTRODUCTION 

The rapid acceptance of the finite element method [ 1 ] of 
solving partial differential equations is largely attributable 
to its inherent compatibility with irregular, or “unstruc- 
tured,” or “neighborhood” meshes, that can be used to dis- 
cretize regions of complicated shape [2]. Unfortunately, 
moving boundaries or moving internal interfaces are dif- 
ficult to handle with unstructured meshes. In the course of 
solving for a succession of steady or transient states, the 
mesh may be redesigned and reconstructed repeatedly as the 
region changes shape and size. Whenever this is done the 
solution has to be interpolated from the old onto the new 
mesh, a cumbersome and diffusive process [3]. These dif- 
ficulties can be circumvented by employing a curvilinear 
coordinate system that conforms to the boundary, a tech- 
nique originally developed for the finite difference method 
[4, 51. More of the difficulty can often be alleviated by 
dividing a complicated region into subregions, or patches, 
each fitted with a conforming coordinate system. 

Boundary conforming meshes are generated by mapping 
the physical domain into a geometrically simple computa- 
tional domain such that each segment of the boundary of 
the physical domain coincides with some coordinate line 

(plane) in the computational domain. The interior of the 
domain is divided by level lines of each computational coor- 
dinate which are computed from specified values or slopes 
along the boundary; see Fig. 1. There are two ways to do 
this: algebraic mesh generation and (differential) elliptic 
mesh generation. Algebraic mesh generation locates the 
mesh points by some simple interpolation scheme [6]. The 
free spine method [7], which has been a workhorse of finite 
element analysis of viscous free surface flows, is an example 
of such a technique. In common with all algebraic schemes 
it is compu&ationally efficient but requires a significant 
amount of user interaction to define workable meshes. 
Moreover, it can fail by excessive mesh distortion [S] and 
even by crossing of mesh curves of the same family. 

Elliptic mesh generation locates the mesh points by 
solving a partial differential equation for each computa- 
tional coordinate [4]. Compared to algebraic techniques, it 
provides inherent smoothness of the mesh, less danger of 
singularity, and requires minimal input from the user. The 
price of a better discretization is the solution of an 
added-usually nonlinear-boundary value problem. The 
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FIG. 1. Mesh generation problem: (a) in the physical region; (b) in the 
computational domain. 
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crux of this approach is the designing of the partial differen- 
tial equations for the coordinates and the boundary condi- 
tions on those equations. Relevant background is provided 
in Section 2, and Section 3 details the technique proposed 
here. The performance of this technique is demonstrated by 
the analysis of slide coating flows in Section 4. Implications 
and extensions are discussed in Section 5. 

2. ELLIPTIC MESH GENERATION 

The ultimate in elliptic mesh generation would be a par- 
tial differential equation system for optimizing the quality of 
the mesh. The goal may be to minimize the discretization 
error in the solution of the physical problem for a fixed 
number of mesh nodes. Alternatively the goal may be to 
minimize the number of nodes for a chosen level of dis- 
cretization error. The errors of discretizing differential 
operators in curvilinear coordinate systems are generally 
formidable to evaluate. The usual approach is to employ 
simple error indicators tailored after the error in the first 
spatial derivative of a dependent variable. The most widely 
accepted of such error indicators quantify the smoothness, 
orthogonality and density of the mesh [S, 93. 

The simplest of the elliptic mesh generation algorithms 
is conformal mapping. Conformal meshes satisfy the 
Cauchy-Riemann equations 4, = qY, rY = - qX. They are 
generated by solving a pair of Laplace’s equations, V25 = 0, 
V2q = 0. Conformal meshes are smooth and orthogonal and 
when the boundary shape is the only constraint on the mesh 
generated, they are usually the most efficient [4]. 

It is often useful to concentrate nodes in regions where the 
solution of the physical problem needs resolving. Conformal 
mapping does not allow such control of mesh spacing. 
Orthogonal meshes are then the simplest choice. These are 
less restricted than conformal meshes in two dimensions, 
though equally restricted in three [lo]. Orthogonal meshes 
can be generated by stretching conformal meshes, e.g. by 
solving 

v- [S((, r])]-‘Vq=O. 
(1) 

Here S(t, q) is the ratio of scale factors (or the element 
aspect ratio); this needs to be specified pointwise before 
Eqs. (1) have a unique solution [4, p. 8; 1 l-151. Control of 
mesh spacing by distributing boundary nodes [ 151 is espe- 
cially valuable when the mesh is divided into subregions. 
Nodes that lie at the corners of such subregions are often 
constrained, e.g., by being fixed to a feature of the physical 
boundary, as are points l-6 in Fig. 1. The resulting distribu- 
tion of boundary nodes must be so propagated into the 
interior that large deviations from orthogonality of the 
coordinate curves are avoided. 

Godounov [ 161 generated orthogonal meshes by mini- 
mizing 

This measure, without the regularization terms that involve 
E, quantifies in the computational space the deviation of the 
mesh from an orthogonal one. As a result, it overemphasizes 
orthogonality in elements of large area. Godounov did not 
define the function S(<, r) explicitly, but instead computed 
it during the course of the minimization. Neither 
Godounov’s orthogonality functional nor his regularization 
terms are directly related to the discretization error. 
Moreover, they are dimensionally inhomogeneous, making 
it difficult to select a suitable value for E. 

When boundary segments of the physical domain are 
highly concave or have acute corner angles, orthogonal 
meshes may not be suitable because they do not allow con- 
centrating nodes near such boundaries. Then some of the 
orthogonality has to be sacrificed. For example, the spacing 
of nodes in a mesh can also be controlled by adding to 
Laplace’s equation suitable forcing functions P({, q) and 
Q(t, ‘I) to make coupled Poisson equations, V2t - P = 0 
and V2q - Q =0 [17-191. A severe disadvantage of this 
approach is lack of control of orthogonality in the interior, 
particularly when the physical region is curved [20]. Visbal 
and Knight [21] developed a related method that delivers 
nearly orthogonal meshes from user-specified node distribu- 
tions along certain parts of the boundary, but theirs is a 
two-step procedure involving successive solutions of a 
Poisson-like system and so it seems more cumbersome than 
necessary. 

Brackbill and Saltzman [22] minimized a linear 
combination of certain measures of mesh smoothness, 
orthogonality, and node spacing. In two dimensions this 
functional is 

1.l [(VU2 + FI)~I dx dy 
smoothness 

orthogonality node spacing 

Here J is the Jacobian of the mapping from the physical to 
the computational domain: 

The mesh is found by solving a pair of second-order, quasi- 
linear partial differential equations that are the Euler 
equations of the minimization problem (2). The boundary 
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conditions that minimize (2) with respect to the edge 
node distribution are natural boundary conditions. If 
special features of the boundary or the solution there need 
resolving, the boundary node distribution can be controlled 
by adding to (2) functionals for boundary smoothness and 
concentration. 

This method can yield impressive meshes [24]; however, 
it is not without difficulties. The weighting factors & and J.,, 
and the function w(x, y) must be adjusted by trial and error 
to optimize performance. The minimization problem (2) 
may lack a solution or the solution may not be unique. Part 
of the trouble is that Brackbill and Saltzman’s measures are 
dimensionally inhomogeneous, their relative contributions 
depending on the local area element J [25]. As a result the 
Euler equations of the minimization problem can lose ellip- 
ticity. A simple scaling proposed by Brackbill and Saltzman 
was proved to be inappropriate when disparate length 
scales are involved [25]. 

In the next section we design a new elliptic mesh genera- 
tion method for free surface and moving boundary 
problems that combines the ideas of optimizing the mesh 
[24, 161 with an orthogonality measure that is directly 
related to discretization error, and a means of controlling 
the node spacing within a region and on its boundary. 

3. DESIGN OF THE NEW METHOD 

An additional difficulty with the Brackbill-Saltzman 
method lies in applying it to patched meshes, we found. 
When nodes at the corners of subregions have to be fixed 
the number of coordinate lines and hence the mean density 
of nodes in each subregion is set. If this density changes 
abruptly from one subregion to the next, the smoothness 
measure in (2) produces relatively large departures from 
orthogonality near the common corners: see Fig. 2a. When 
we tried to increase the orthogonality weight I, in (2) to 
correct this tendency our Newton iteration failed to 
converge. It was also difficult to cluster nodal points 
near concave boundaries. We could get solutions only by 
increasing simultaneously the orthogonality weight I, and 
the concentration weight i,. The concentration control 
function w(x, y) was set to one everywhere to equidistribute 
element areas. A typical mesh is shown in Fig. 2b: all 
elements are of good quality, except a couple that are 
grossly distorted. Clearly such a mesh is unacceptable. 

We believe that much of this difficulty is due to the fact 
that Brackbill and Saltzman optimized the mesh in the 
L,-norm; i.e., they used an integral measure of the mesh 
quality over the entire domain. Such a procedure does not 
provide local control of mesh properties. What is needed is 
to optimize in the L,- norm, i.e., to minimize the distortion 
of the worst element in the mesh. How to optimize in the L, 
norm is not yet well established, however. As a compromise 
we chose to seek L,-functionals that are sensitive to gross 
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FIG. 2. Patched meshes generated by Brackbill and Saltzman’s 
method: (a) I, = 1, = 0. The smoothing property of Laplace’s operator 
causes large deviations from orthogonality at constrained points 1 and 2; 
(b) I,, # 0,1, # 0, w(x, y) = 1. Optimizing in the &-norm can give rise to 
a few grossly distorted elements. 

distortions of the mesh but are comparatively insensitive 
to small distortions. Another source of difficulty is the 
inappropriateness of global scaling of the orthogonality 
weight ;10 [25]. 

3.1. Orthogonality and Regularization 

An attractive alternative to the orthogonality measure of 
Brackbill and Saltzman’s (in two dimensions) is 

dx dy (4) 

which quantifies the deviation of the mesh from an 
orthogonal one that satisfies the generalized Cauchy- 
Riemann equations S.!, = qY and St, = -qX. The Euler 
equations for the functions 5 = 5(x, y) and q= ~(x, y) that 
minimize this functional are the general equations for an 
orthogonal coordinate system (1). Hence, S here is taken as 
the local ratio of scale factors along the level curves of 5 
and v] (s is arc length): 

This choice results from minimizing (4) with respect to 
S(x, y), i.e., from the Euler equation aF/aS = 0, where F is 
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the integrand of (4). Then, as is easily established, (2) is 
identical to 

where ie - b,, is the angle between level curves of 5 and q in 
the physical region. This measure needs no scaling because 
it has the same dimensions as the smoothness measure 
adopted below (Eq. (7)). Moreover, it depends on the angle 
#t; - c$~ in the same way as does the discretization error of 
the first spatial derivative of a dependent variable (e.g., 
C% P. 1831). 

With (5) for S(x, y), Eqs. (1) admit an infinite number of 
solutions: they are satisfied by any two sets of coordinate 
curves that are orthogonal [ 111. In order to isolate one 
solution of (1) and at the same time control the concentra- 
tion of nodes, small regularization terms of the form 

are added to (1) (cf. [16]). Here f(5) and g(q) are 
one-dimensional concentration control functions. When 
j(5) = g(q) = 1, the regularization terms (6) tend to equi- 
distribute arc-length along coordinate curves. More 
generally, fand g can be either specified a priori or made to 
depend on solution features+.g., gradient or curvature. 
The minus signs in (6) are explained below. The logarithmic 
dependence on scale factors, an empirical modification, 
removes the effect of element size. The weighting factors E, 
and a2 may be chosen a priori or adaptively; in (6) they are 
divided by J for dimensional consistency with (1) (cf. [26] ). 
Maintaining distinct E, and .s2 allows a degree of inde- 
pendent control of node spacings along the two sets of 
coordinate curves. This is useful in situations such as film 
flows where the flow domain is elongated in one coordinate 
direction. The regularization terms (6) are not associated 
with the minimization of any functional; however, they can 
be viewed as penalty terms for the constrained optimization 
of orthogonality as expressed by (4). 

Occasionally, it is advantageous to add to (4) a small 
smoothness contribution, viz., 

ES ss C(VO’+ (Vv)‘l dx & 

and equivalently, two regularization terms, 

Es v2t and Es v21 (7) 

to (1). The weighting factor E, may be chosen a priori or 
adaptively. The minus signs in front of the distribution 
terms (6) make them compatible with the smoothness terms 
(7). This can be easily seen by considering one-dimensional 
versions of the mesh generation system (8), (9) below. 

The regularization terms (6) and (7) may degrade the 
orthogonality that would result by minimizing (4) alone, 
boundary conditions permitting. Indeed, this is found to be 
the case when the physical region is not compatible with 
boundary-conforming orthogonal coordinates (e.g., when 
corner angles are not 900). Fortunately, strict orthogonality 
is unnecessary because angles larger than 30” do not 
contribute significantly to the discretization error [S]. 

3.2. Differential Equations and Boundary Conditions 

In summary the differential form of the mesh-generating 
system at which we have arrived is 

v. (Jx; + y;/x: + y;: + E,) vg 

E2 8 
- 2% lnC(xfj + Y:) g(rl)l = 0. 

Plainly in this method, a smoothness functional and a pair 
of concentration contraints are used to regularize an 
orthogonality functional. The control parameters E, , sZ, 
and E, are kept small, except possibly at some boundaries 
where node distributions are specified. As a result the mesh 
produced is nearly orthogonal. We also find that specified 
boundary distributions of nodes are automatically 
propagated into the interior of the mesh with near- 
orthogonality maintained. There is no successive 
approximation of forcing functions in order to interpolate 
them from boundaries, as in the most flexible of previous 
methods. Hence Newton’s method and its variants can be 
brought to bear on nonlinear elliptic mesh generation. 

On fixed parts of the boundary the equation that defines 
the boundary curve (e.g., y= y(x)) replaces the mesh 
generation equation associated with the coordinate that is 
constant on that boundary segment. At free and unknown 
parts a condition from the physical problem invariably 
replaces the same equation. The remaining degree of 
freedom can be used to control the distribution of nodes 
along the boundary or the angle between intersecting lines 
at the boundary (see the next section). If large deviations 
from orthogonality are to be avoided, boundary node 
distributions ordinarily should not be specified on more 
than three out of the four boundary segments around each 
subregion [lo]. 
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If all segments of the boundary are known, the mesh 
generation problem decouples from the physical problem 
(until control parameters and functions are made adaptive). 
But when one or more segments are free and hence 
unknown, the mesh generation problem and the physical 
problem are coupled through the boundary conditions on 
those segments and must be solved simultaneously. 

3.3. Finite Element Formulation 

The finite difference method has been routinely used to 
solve mesh-generating systems like (8), (9). The equations 
are first transformed from physical coordinates (x, y) to 
computational coordinates (r, q), which can greatly com- 
plicate them (cf. [25]). In the finite element (Galerkin) 
method this transformation is effected by an isoparametric 
mapping element-by-element and the equations need be 
formulated only in the physical coordinates (x, y). The 
physical coordinates are represented in terms of finite 
element basis functions d’( <, q) that are polynomials defined 
on a standard square, - 1 d 5 6 1, - 1 < r] < 1. The 
mapping (possibly time dependent) is 

where t denotes time. The node locations x,(t) are deter- 
mined by requiring that the weighted residuals of Eqs. (8), 
(9) with respect to the same basis functions vanish 

R+ (J i x; 
A 

+ y;/x: + y; + E,) Vg . V# J d[ dq 

- 
I iA 

(Jx: + y:/xt + yi + E,) n .Vg 4’; dt 

-cl Af(5)W~+$)$~&dv I 

+EI i‘ FA.fW ln(x: + Y:) 4’4 = 0 

R:= (JX~+4’~jX:+y~+E,)v~.V~‘Jd5drl 
s A 

- ,.,lJ i‘ 
xz + yi/xg + y: + E,) n .Vq 4’2 dq 

- E2 
i‘ 

A drl) ln(xz + Y,‘) 41, & 4 

+ c2 j?, g(v) ln(x: + vi) d’& = 0. 

Here A is the computational domain and aA is its boundary. 
An essential boundary condition can be imposed by 
replacing Eq. (lla) or (llb) at boundary nodes by the 
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equation of vanishing (6a) or (6b), respectively. A 
convenient alternative is to retain the weighted residual 
equation but add to it a penalty term consistent with the 
regularization term: 

R$ -Ml 
s pAf(5) lnb: + Y:) 4: & (12a) 

R;1= --A4 2 
i 

g(v) ln(xi + Y$ @f, 4. (12b) 
r?A 

Here M, and M, are weighting factors much larger than E, 
and s2. These two penalty terms are derived from the 
Galerkin forms of (6) by integration by parts. Resulting end 
terms can be dropped because at the ends of the {-interval 
or q-interval the mesh generation equation is replaced by 
either the equation of the boundary curve or a physical (e.g., 
kinematic) condition. 

These penalty terms have an additional use that is not 
limited to the boundary. In isoparametric elements 
generated with (11) the midside nodes can get away from 
middles of element sides. This can give rise to uncontrolled 
upwinding or downwinding effects, and even to singularities 
in spatial derivatives of a dependent variable [27, p. 2261. 
Although such effects can be advantageous (as, e.g., in 
inertia-dominated flows, or to resolve stress singularities), 
they can be avoided by forcing midnodes to lie in the middle 
of element sides. This is accomplished by setting the concen- 
tration control function f (g) to unity and the penalty 
coefficient M, (M2) to a large number at midside nodes 
(cf. subparametric mapping, Section 4.4 below). 

Orthogonality at the boundary segments can be imposed 
naturally by dropping the first boundary integrals in (11). 
The second boundary integrals can also be dropped because 
the equations to which they belong are replaced by the 
equation of the boundary curve or a condition provided by 
the physical problem. Hence the working mesh-generating 
system becomes 

-Ed Aft5)W~+y:)4~dtdv I 

--Ml s ,,f(S) ln(x: + Y:) 4: d5 = 0 (13a) 

R:- s A 
(&;+ y~jx~+y:+E,)V~.V~‘Jd5drl 

-82 
s A 

g(v) 14x: + Y:) di, d5 4 

-M2 
s dA 

g(v) lnb: + Y$ d’, 4 = 0. (13b) 
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The integrals in (13) are evaluated by Gaussian 
quadrature; this produces a system of nonlinear algebraic 
equations for the coefficients [xI, y,] of the basis functions 
in (10). 

4. EXAMPLE: ANALYSIS OF SLIDE COATING FLOW 

Developed for the finite element discretization of viscous 
flows with free surfaces, the new method has been applied 
extensively to slide coating flow. This is an industrial 
precision coating operation that is routinely used in 
photographic manufacture. A liquid film is formed on an 
inclined plane, flows through a free “coating bead” bounded 
by upper and lower free surfaces, and is deposited on a 
moving sheet, displacing air as it wets the solid (see Fig. 3a). 

A small vacuum-a few centimeters of water-is usually 
applied under the lower free surface to stabilize the bead’s 
operation. When the lower meniscus pins at the sharp edge 
of the slide (Fig. 3b) the flow is usually stable. Too high a 
vacuum causes the lower free surface to wet the lip under- 
side (see Fig. 3c) and may destabilize the flow to periodic 
disturbances in the third dimension [28]. 

Elsewhere we analyzed the steady, two-dimensional slide 
coating flow of Newtonian liquid using the older free spine 
method [8]. Although this method was adequate for some 
simple configurations, in our hands it failed when the shape 
of the coating bead was distorted by the pressure differential 
across the liquid bridge. The seat of failure was the 
parametrization of the lower free surface. 

In contrast, the present method copes readily where free 
spine parametrization fails. We use it below to trace entire 
families of two-dimensional steady states as well as rapidly 
evolving transient states of slide coating flow. Its power is 
best illustrated by following the evolution of selected 
unstable steady states in an attempt to confirm the results of 
linear stability theory [29]. 

4.1. The Physical Problem 

The Navier-Stokes system that governs the two-dimen- 
sional unsteady flow of a Newtonian liquid of density p, 
viscosity ,u, and surface tension 0 is (in dimensionless form) 

-Re(au/&+u.Vu) 

+V.T+3/cos(cr+B)f=O 

v.u=o 

(14) 

(15) 

with boundary conditions 

aK/at+u.VK=O at free surfaces 

n . T = l/Ca dt/ds + p,n 

(16) 

u = u, 

at free surfaces (17) 

at solid surfaces. (18) 

Here u is the velocity measured in units of U= q/h, = 
[pgq’ cos(cr + /?)/3~]“~, the average velocity of the fully 
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FIG. 3. (a) Slide coating flow of a single liquid layer; (b) non-wetting case; (c) wetting case. 
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developed film on the slide. Length is measured in units of 
the thickness h, = [3,uq/pg cos(cr + /?)I ‘I3 of that film; time 
in units of h,/U. q is the volumetric flow-rate per unit width, 
b is the angle the web makes with the gravity vector, tl is 
the angle between the slide surface and the web being 
coated, and g is the force of gravity per unit mass; 
f = -sin fii - cos /?j is the unit vector in the direction of 
gravity; i and j are the unit vectors in the directions normal 
and parallel to the web. For an incompressibe Newtonian 
liquid the stress tensor is T = -pI + [Vu + (VU)~], wherep 
is the pressure and I the unit tensor. Both stress and 
pressure are measured in units of pq/hi. Re = pq/p is the 
Reynolds number, Ca = pLu/r~ the capillary number, pb the 
dimensionless pressure difference, and II, the dimensionless 
velocity of solid boundaries. n is the unit normal to the 
boundary, t is the unit tangent, and s is the arc-length along 
the boundary; thus dt/ds measures curvature. In the 
kinematic condition (16), K can be defined as 

K= v(x, Y, t) + 1 (19) 

because here the free surfaces have constant isoparametric 
coordinate q = + 1 or - 1 (a key connection to the mesh 
generation problem). 

At and near the dynamic wetting line, along which 
liquid first contacts the moving web, we employ Navier’s 
boundary condition: 

~s,ip-‘fF. (u-u,) = t,n,:T. (20) 

Here Bslip is the slip coefficient and t, and n, are the unit 
tangent and normal to the solid surface. The angle of con- 
tact between the liquid/air interface and the solid surface is 
also needed as a boundary condition on the free surface 
shape at the wetting line, the location of which is unknown 
(another key connection to the mesh generation problem): 

n, . n, = cos 9,. (21) 

Here n, is the outward unit normal at the wetting line to the 
visible free surface. Both BSliP and 9, can be regarded as 
empirical parameters that have to be measured experimen- 
tally. 

When the coating liquid wets the underside of the lip, as 
in Fig. 3c, the contact angle 0, and the cut-back angle y are 
also needed for the description of the flow. With the wetted 
distance h, and the contact angle 8 as shown in Fig. 3, the 
boundary conditions at the static contact line become 

(e, -e) h, = 0 with 8, - 8 3 0, h, B 0. (22) 

Here 8, = cos ~ ’ (n,. n,) and the unit normals nf, n, are 
evaluated at the static contact line. Equation (22), which 
goes back to Gibbs, is a complementarity condition 

between 8,-e and h, [30, 311: when the contact line is 
pinned, i.e., h, is equal to zero, 8 can assume values less than 
8,; when there is wetting, h, is positive and 8 must be exactly 
equal to 0,. The contact angle 8, can also be regarded as an 
empirical parameter. 

At an inflow boundary placed sufficiently far upstream on 
the slide a semiparabolic velocity profile is specified. Finally, 
at an outflow boundary placed sufficiently far downstream, 
the traction is set to zero and the asymptotic free surface 
slope is imposed naturally as detailed elsewhere [ 81. 

4.2. Finite Element Formulation 

Steady and transient states of the system (14)-(23) 
were computed by the Galerkin/finite element method and 
Newton iteration. The velocity, pressure, and position 
unknowns were expanded in terms of the basis sets $‘(<, q) 
and IClk(5, ~1: 

u = 1 ui(t) 4’(59 VI), (234 

P = CPkO) ll/k(5? 9). Wb) 
k 

The basis functions were nine-node biquadratics for & and 
four-node bilinears for G” [32]. These functions were con- 
structed on the standard (5, q) square domain. This square 
was mapped into each of the deformed quadrilateral 
elements in the flow domain by the time-dependent 
isoparametric mapping (10). 

Time derivatives a/at at a fixed location in Eqs. (14) and 
(16) were transformed to time derivatives at fixed iso- 
parametric coordinates, denoted by an overdot (k denotes 
mesh velocity): 

au/at=i-n.vu. (24) 

The weak (Galerkin) form of (14), (15), and (24) 
was then obtained by multiplying with the appropriate 
basis functions, integrating over the physical domain, 
and applying the divergence theorem to the momentum 
equation: 

Ry=jA {T.V#+[Re(i+(u-i)-Vu) 

3f 

- cos(GI + 8) 

R;z tikV.u Jdcdq=O I C-26) 

R;E 
I dA 

n.(u-i)o$d<=O. 
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M, C, and K denote momentum, continuity, and kinematic 
residuals. Essential boundary conditions were imposed by 
replacing the corresponding weighted residual equation 
with the desired velocity or free-surface specification. 
Natural boundary conditions were imposed through the 
boundary integrals in (25) as described by, for example, 
Ruschak [33]. 

4.3. Evaluation of the Basis Function Coefficients 

The weighted residuals (25))(27) involve the unknown 
coefficients of the basis functions in (10) and (23). There are 
as many momentum equations (25) as velocity unknowns, 
as many continuity equations (26) as pressure unknowns, 
and as many kinematic equations (27) as free surface nodes. 
To close the system, equations are needed for the Cartesian 
coordinates of interior nodes and for one of the two coor- 
dinates of each of the free surface nodes. These are provided 
by the mesh generation system (13). There are as many 
mesh generation equations (13) as nodal coordinate 
unknowns. At free surfaces the kinematic equation (27) 
replace equation (13b), except at contact lines where the 
contact angle condition (21) or (22) replaces ( 13b). 

Biquadratic isoparametric elements were first chosen to 
approximate the geometry in (10). Subparametric elements 
for the interior elements were subsequently found to be 
more efficient as discussed below. Area integrals in (lo), 
(25)-(27) were evaluated by nine-point Gaussian quad- 
rature and line integrals by three-point quadrature. The 
result of integration is a system of differential and algebraic 
equations of index two [34] f(t, y, f) = 0, for the vector of 
time dependent coefficients y = [ui, vi, pj, x1, y/IT. Steady 
states of the system were found by Newton iteration with 
zero-order continuation in parameters and Hood’s [35] 
frontal solver. The parameter step size was adjusted 
manually to achieve convergence in four to six iterations. 
The very first initial guess was a solution calculated by the 
free spine method [ 81. 

Our choice of a time-stepping method was the differen- 
tial-algebraic system solver DASSL [36], which is based on 
a variable time-step, variable order, backward difference 
method. This solver requires a linear combination of the 
Jacobian, or sensitivity matrix 8 f/a y, and the mass, or the 
basis function overlap matrix, a f/a y. 

Consistent initial conditions and time derivatives were 
calculated by taking two steps with the first-order backward 
difference algorithm and suppressing DASSL’s time trunca- 
tion error control during those steps. Pressures and coor- 
dinates of nodes other than those on free surfaces were 
excluded from DASSL’s time-truncation error estimation 
but not from the convergence test of the Newton iteration, 
as suggested by Petzold [37]. Doing so made DASSL 
perform faster and more smoothly, i.e., abrupt changes 
of the time-step size were avoided. 

4.4. Performance of the New Mesh Generation Method 

Steady states. The elliptic mesh generation system (3.10) 
is demonstrably more flexible than the free spine method 
[7] in the computation of steady states of the slide coating 
flow. First we consider the case where the lower meniscus 
remains pinned at the sharp edge of the slide die. A typical 
tessellation of the flow domain into finite elements 
generated by the spine method is shown in Fig. 4a (see 
Table I for parameter values). The location of the base point 
of each spine and its orientation and spacings along it, had 
to be chosen a priori or generated adaptively for each steady 
state as we detail elsewhere [S]. 

As the gap is widened, the liquid bridge bulges 
downwards under the combined action of gravity and 
applied vacuum; see Fig. 4. As the distortion grows it 
becomes impossible to parametrize both the upper meniscus 
and the lower meniscus with the same straight spines: the 
angles between coordinate curves at the slide edge soon 
become too large and Newton iteration diverges. Designing 
curved spines is tedious and success is not guaranteed. 
When the calculation fails to converge it is not clear whether 
the limit point is caused by the discretization or whether it 
is a real feature in the solution space of the flow problem. 

FIG. 4. Sequence of finite element meshes of slide coating flow for 
different gap-widths generated by the free-spine method of Kistler and 
Striven [7]. 
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TABLE I 

Parameters 

(a) Typical slide mater system and the base case 

Parameter Range Base case 

Final film thickness 
Web speed 
Pressure difference 
Clearance 
Viscosity 
Density 
Surface tension 
Dynamic contact angle 
Slide-web angle 
Web-gravity angle 

Group 

Reynolds number 
Capillary number 
Pressure difference 
Clearance 
Draw-down ratio 
Dynamic contact angle 
Slip-coefficient 
Slip length 
Slide-web angle 
Webgravity angle 

Units 

pm h 3&200 115.3 

m/s uw G5 1.67 
Pa ph &40 161.1 

mm L 0.14.4 0.347 

mPa.s P 0.5-100 8.717 

gr/cm’ p 0.991.3 1.13 

dyn/cm c 2C70 70.1 

deg. 0, 140-160 160 

deg. 

; 

60-80 60 

deg. Cb25 0 

(b) Dimensionless 

Definition Base case 

25 

0.0247 

-90 
0.358 

8.4 

160 

0.01 
one element 

60" 
0" 

Length 
Velocity 
Time 

h, = [3pq/pg cos(cc +/I)]“’ 0.969 mm 
U = [pgq2 cos(a + @/3p] ‘I3 19.905 cm/s 

T= hOIll 4.869 ms 

Figure 5 shows the same computation with the elliptic 
mesh generation system (13). The control functions used in 
(13)weref=(1+a~j)/(l+a)ontheslide,f=1inthebead, 
and f = [ 1 + a(1 - tj)]/( 1 + a) in the web region, with 
a = 40. Here tj was the element column number in a sub- 
region divided by the total number of element columns in 
that subregion. (Likewise, although not used here, q, would 
be the row number divided by the total number of rows in 
that subregion.) These choices off caused the nodes and 
thus the elements to concentrate toward the bead region 
in order to resolve the stress singularities at the contact 
lines. Increasing the parameter a caused more and more 
clustering of nodes toward the bead. In the cross-stream 
direction g was set to unity in all regions; this enforced 
equidistribution of arc length in the lilmwise direction. The 
distribution prescribed by f(5) was also enforced at the 
lower boundary by setting the penalty parameter M, to lo3 
there. M, and M, were set to zero on all other boundary 
segments. 

As the gap widened and the bead region elongated, 
elements were added in the streamwise direction at the bead 
region; compare states in Fig. 5. Coordinate curves between 
elements automatically spread out to accommodate the 
newly added elements. No change of control functions or 
parameters was necessary. Refinement in both coordinate 
directions was also easy; Fig. 6 shows three different 
meshes with (15 + 2 + 9) x 3, (20 + 3 + 12) x 3 + 
0  Tr 13.h   9o20.8 0  T381  Tc 0.0844  Tw (3 6.2668 0  TD 3  0813  T1r9; ) Tje0  TD 2  Tw (3 ) Tj
0 2Tr -0 9o205  Tw (easy aT1r9; ) Tje0  2e9  TD0404  Tw (diff86 TD 3  Tr -0.1353  T7 0  TD 3  Tr -0.6  Tc 0.5976  Tw (si 0  T Tje0  2492 Tc i8  Tw 2381  Tc 0.0844 5980.1241 o2ae92270  TD 3 8nement )an0.1622  Tc 0.1119r -0.1625  Tc 0.1115  Twy; ) Tjh 
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FIG. 6. Mesh refinement in both directions: (a) (15 + 2 + 9) x 3 = 
78 elements; (b) (20 + 3 + 12) x 4 = 140 elements; (c) (30 + 5 + 18) x 6 = 
3 18 elements. 

extending downstream makes the slip length of the coarsest 
and finest meshes approximately equal, we found, and 
changed the predicted dynamic contact line position to 
0.3357. This is within 0.1% of the prediction from the 
coarsest grid. Clearly a more consistent treatment of the 
slip condition is desirable to achieve the optimal rate of con- case. 

pbEp2- p, =-161.1 Pa 

z 
F 0.5 
65 
B 

0.0 
Y 
= -0.5 

P 

E 
5 

-1.0 

STABLE lb-- UNSTABLE 

-.J 

1.6 

GAP WIDTH MM 

FIG. 7. Turning point along the family of states of varying gap width. 

vergence. An attractive option is to use singular elements 
that can represent accurately the apparent singularity at the 
contact line [27]. The second of the meshes just mentioned 
was used in most of the calculations that follow. However, 
the number of columns of elements in the bead region was 
varied as parameters that affected the length of the bead 
region were changed. 

It proved possible to trace the entire family of states 
without changing the control functions or control 
parameters. Continuation revealed the existence of a limit 
point at which this family of solutions turns back toward 
lower values of the gap width; see Fig. 7. Stability and multi- 
plicity of this family of states have been discussed elsewhere 
[29]. Two more examples that test the capabilities of 
the elliptic system are shown in Fig. 8 and 9. Control 
parameters and functions were identical to those of the base 

pb = lo.5 Pa 
I 

pb=15Pa 1 

FIG. 8. Sequence of steady states and finite element meshes along a family of varying pressure difference between upper and the lower free surface. 
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U, = 98.5cmk 

FIG. 9. Sequence of steady states and finite element meshes along a family of varying web speed. The last state is past the turning point (see 
Christodoulou and Striven [29]). 

Cost comparisons are revealing. Both the spine and 
elliptically generated discretizations have (20 + 3 + 12) x 4 
= 140 elements. Spine parametrization leads to 1539 
unknowns; the elliptic mesh leads to 2738 (the difference 
being the number of independent node coordinates). Using 
the one-processor CRAY-2 at the University of Minnesota, 
the free spine calculation required 2.4 CPU seconds per 
Newton iteration, the elliptic mesh generation system 5 s. 
The 100 % increase is certainly justified if the solutions that 
could not be found by the spine parametrization are 
required. The increase may also be partly justified by 
savings from trial-and-error adjustment of spines. However, 
the difference can be reduced by using subparametric 
mapping. 

The number of unknown nodal coordinates can be 
significantly reduced by adopting subparametric elements in 
the interior of the mesh. This is done by making all element 
sides, that are not boundary segments, straight lines and 
placing the mid-nodes at the middles of the corresponding 
element sides, i.e., 

x2 = 1/2(x, +x3), x4 = 1/2(x, + x7), 

x6 = 1/2(x3 + x,), x2 = 1/2(x, +x3). 

The center node of each element is positioned at 

x5 = 1/2(x, + x3 +x7 + xg) - f/4(x, + x4 + x6 + x,), 

INTERIOR FREE SURFACE 
ELEMENT ELEMENT 

. ACTIVE NODE 

X CONSTRAINED NODE 

FIG. 10. Subparametric mapping. 
FIG. 11. (a) Elliptically generated finite element mesh with sub- 

parametric elements; (b) enlargement of the bead region. 
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FIG. 14. Initial (unperturbed) state for transient analysis and its eigenspectrum: the state is made unstable by the positive real eigenvalue. 

achieved by allowing the nodes along the lower side of the 
lip to collapse onto the die edge when the physics dictated 
that the die face was not wetted. Figure 12 shows the static 
contact line position and static contact angle as functions of 
the pressure difference applied across the liquid bridge. The 
complementarity condition (22) was obeyed, as intended. 
When the meniscus pins at the edge, coalescing nodes give 
rise to degenerate, or singular, elements which are advan- 
tageous for resolving the stress singularity there [27]. 

Figure 13 shows another application of the sub- 
parametric mapping: a flow of two superposed, miscible 
liquid layers, with the lower layer wetting the underside of 
the lip. At the interface between the two layers, Eq. (13b) 
was replaced by the kinematic condition (27). Between the 
two layers there is no interfacial tension; thus the interface 

can curve sharply as it approaches the wetting line. When 
the mesh was not sufficiently refined in this region, “wiggles” 
appeared in the dividing streamline and associated field 
variables. These artifacts were more severe when 
isoparametric elements were used but disappeared when the 
local concentration of nodes in the mesh was raised. 

Transient response. A more stringent test of mesh genera- 
tion is the computation of transient free surface flows. 
Unstable steady states of large gap width (Fig. 7) were 
perturbed and their ensuing development followed in time. 
Figure 14 shows one before the pressure difference between 
upper meniscus and the lower meniscus was raised slightly, 
from 161.1 to 161.5 Pa (this perturbation is small and 
changes the spectrum only imperceptibly). In Fig. 15, the 
most dangerous part of the eigenvalue spectrum of the 

-2.5 I I I1 I I I I I, 
0 2 4 6 8 10 

TIME 

FIG. 15. (a) Transient response to a small increase of pressure difference between upper and lower free surface, from 161.1 to 161.5 Pa; (b) Dynamic 
wetting line position (dimensionless) as a function of time (dimensionless). 



52 CHRISTODOULOU AND SCRfVEN 

4 

-1.0 

t 
; -1.3 

s 
= -1.6 
CI 

i g -1.9 

0 

$ -2.2 

z 

0 3 6 9 12 15 

TIME 

FIG. 16. Transient response to a small decrease of pressure difference 
across the liquid bridge, from 161.1 to 160.5 Pa. 

steady state reveals that this steady state is unstable: there 
is a positive, real eigenvalue. The perturbed flow was 
followed until the lower meniscus became tangent to the 
lower lip, after eight time units (approximately 40 ms). 
Figure 15a shows the discretization and predicted velocity 
fields at selected times, and Fig. 15b shows the wetting line 
position as a function of time. The response to the slight 
pressure rise was exponential-like growth-ballooning-of 
the coating bead, which agrees with the results of linear 
stability analysis. The elliptically generated mesh promptly 
followed the rapidly rearranging flow, with no need of 
changingShe control functions or the control parameters. 

Figure 16 shows the wetting line position as a function of 
time after the pressure difference was reduced slightly from 
161.1 to 160.5 Pa. The initial steady state is the same as in 
Fig. 14 and thus unstable. After 12 time units (60 ms), little 
change has taken place: the bead has thickened slightly! 

a> 
3 

r-4 
1 

-1 00 
q 

-3 I 
1 

14) 

1 ReOJ I 

-0946 

5 
F 
F=i OJ4’ P 
w 
5 -0.948 

So the response depends critically on the direction of the 
initial disturbance, and elliptic mesh generation facilitates 
uncovering this asymmetry. 

Disturbing the wetting line position-a direct perturba- 
tion of the state of the system-provides another fascinating 
example. The state was chosen to lie between the Hopf point 
and the turning point of the family of states of varying gap 
width (Fig. 7). After a short oscillatory transient the wetting 
line seems to come to rest (Fig. 17b), a response that 
appears discordant with linear analysis (in the spectrum of 
the steady state there are two positive, real eigenvalues; see 
Fig. 17a). Figure 18 shows that the apparent return to a 
steady state was actually part of a long incubation period of 
about 20 time units (100 ms). The chosen disturbance was 
poor in the unstable modes and richer in some stable 
oscillatory modes. Consequently it took a long time com- 
pared to the initial transient for the unstable modes to grow 
to discernible magnitude. 

The preceding examples show the capabilities of the new 
elliptic system in discretizing entire families of steady states 
as well as rapidly rearranging transient states of free surface 
flows. They also permit critical testing of linear stability 
analysis [29] and they emphasize that it is more difftcult to 
assess stability by transient simulation than by linear 
stability analysis. 

5. DISCUSSION 

The performance of the elliptic mesh generation system 
has been illustrated with examples of viscous free surface 
flows. The development was based on considerable 
experimentation that led not only to the design of partial 
differential equations and boundary conditions, as 
explained in Section 3, but also to the establishment of 
guidelines for the selection of control parameters and 
control functions, as described below. 

INITIAL 
TRANSIENT 

4 

I PERTURBATION 
DAMPS 

FIG. 17. Transient response to a small perturbation of dynamic wetting line position (short time scale): (a) most dangerous part of the spectrum; 
(b) dynamic wetting line position (dimensionless) as a function of time (dimensionless). 



DISCRETIZATION OF FREE SURFACE FLOWS 53 

g F 0.96 

% 
P 

FINALLY GROWS 
EXPLOSIVELY 

g 0.98 
t 

LATER RESPONSE 

1.04 1 I I I I I 
0 5 10 15 20 25 

TIME 

FIG. 18. Transient response to small perturbation of dynamic wetting 
line position (longer time scale): dynamic wetting line position (dimen- 
sionless) as a function of time (dimensionless). 

5.1. Inputs to the New Method 

By virtue of the dimensional homogeneity of individual 
terms in the mesh generating system (8) and (9), selection of 
control parameters is straightforward. E, and s2 should nor- 
mally be of order unity; values in the range O.lLO.3 have 
worked well in most cases. M, and M, equal to 1000 have 
generally performed well. The precise values of these 
parameters are not crucial if the boundary has neither 
highly curved parts nor acute corner angles. Indeed, we 
have found that in such cases the smoothness parameter E, 
and the penalty parameters M, and M, can be set to zero: 
the resulting mesh is still nearly orthogonal and nodes are 
distributed as specified by the control functions f(t) and 
g(q). Only when highly concave boundaries or highly acute 
corner angles are present may nonzero values of E, (never 
larger than 0.1 in our experience) be necessary to avoid the 
crossing of coordinate curves that are transverse to those 
parts of the boundary. 

Increasing s1 or s2, say by a factor 100, enforces the 
desired distribution along the corresponding coordinate 
direction. Setting M, or M, to a number of the order of 1000 
accomplishes the same along the corresponding boundary 
segment. Doing both is useful when the mesh needs reline- 
ment near concave boundaries (e.g., Fig. 2), because 
requirements of orthogonality and smoothness dilute 
coordinate curves near such boundaries (cf. [S, p. 1921). 
Avoiding the dilution usually compromises orthogonality 
only a little, because even one of Eqs. (13) with the corre- 
sponding control parameter (E, or eZ) small, is enough to 
generate a nearly orthogonal mesh; this was demonstrated 
by Visbal and Knight [20] in their work on a related 
method. 

Briefly, increasing E, , sZ, or E, too much can result in 
severe departures from orthogonality at the corners of sub- 
regions. The lower limits on these weights are set by lack of 
convergence of the Newton iteration, owing to the infinity 
of solutions associated with the orthogonalization terms 
alone (cf. Eqs. (1)). Actually the abundance of solutions 
that maximize orthogonality appears to be an advantage; 
the probability of the mesh generation system not having a 
solution for a given set of control parameters and functions 
is small, and any reasonable estimate of a roughly 
orthogonal mesh is likely to fall within the range of con- 
vergence to a solution of (13) by the Newton iteration used. 

The same control or distribution functionsf(5) and g(q) 
were employed in the interior of the mesh and in boundary 
terms in (13) in order to avoid mesh boundary layers that 
could otherwise arise. Constant, linear, or hyperbolic sine 
functions were chosen here for simplicity. Similar distribu- 
tion functions have been used commonly in algebraic mesh 
generation, as detailed for example by Vinokur [40]; other 
choices may be more appropriate in resolving features of 
other physical problems. 

5.2. Subregions and Patching 

The examples in Figs. 5,9, and 10 are flow regions that all 
map to a single topologically quadrilateral domain. These 
regions are simply divided into sequential subregions of 
flow down the inclined slide, flow in the bridging bead, and 
flow on the departing substrate. The only differences are in 
the control functions f(5) and g(q) and the control 
parameters si and E*. Patching together these subregions is 
automatic when, as in these examples, the row count of 
elements does not change from one subregion to the next. 

If the flow wets the underside of the die lip the physical 
domain must be mapped onto a patched computational 
domain like that shown in Fig. 12. The entire mesh is again 
generated simultaneously and large deviations from 
orthogonality are avoided when at least one of E, and e2 is 
kept small. However, when one of these, say s2, is chosen 
large in order to achieve a desired distribution of nodes 
along level curves of <, and the two adjacent subregions dif- 
fer significantly in size, distortion can arise at the common 
boundary; see Fig. 19a. This misbehavior is controlled by 
making c2 small at the nodes on the common boundary; see 
Fig. 19b. In this case the desired distribution along level 
curves of r is enforced independently in each subregion. 
Moreover, Ed can now be raised further to achieve near equi- 
distribution; compare Fig. 19~. The same procedure was 
used in the case of the two-layer slide flow shown in Fig. 13. 

5.3. Conclusions and Future Work 

We have developed an elliptic mesh generation system 
for generating boundary-fitted, nearly orthogonal finite 
element discretizations of two-dimensional free and moving 
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most recently through the Center for Interfacial Engineering. It was also 
supported by the University of Minnesota through a Graduate Disserta- 
tion Fellowship to K. N. Christodoulou and grants for computation from 
the Minnesota Supercomputer Institute. 
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